Compiler Hints for Co-accessed Variables

Group
Valerie Choung (vchoung@andrew.cmu.edu)
Daniel Ramos (drramos@andrew.cmu.edu)

(and Edward Chen (ejchen) working on an overlapping project)

URL
http:/nicebowlofsoup.com/coaccess

Project Description
In our project we will explore how object or variable co-access information can be useful in optimizing
lower-level software stack components.

What is a Co-access?

First, we must consider what a co-access even is. On a high level, we say two objects or variables are
co-accessed if an application accesses those variables within a short time duration. This is a rough
description of a co-access, and part of our project will involve determining what a useful specific
definition of a co-access should be. For example, the simplest definition of a co-access could be a pair of
addresses that are each dereferenced within N instructions of the other with no exceptions.

Another aspect of co-accesses to consider is whether a co-access should be a uni- or bi-directional
relation: if an access to variable a is always followed by an access to b, but an access to a doesn’t always
precede an access to b, then we need to choose whether we still call the pair (g, b) a co-access. This
problem can be partially resolved by giving each co-access a notion of strength. A very strong co-access
could be one where two variables are always accessed together and their accesses are very close and very
frequent. A weaker co-access would be one where two variables are mostly accessed together, and their
accesses are somewhat frequent.

Hotness-based Heap Data Placement

For our project, we will examine an optimization that would benefit from having co-access data:

We observe that strongly co-accessed variables share the same lifetimes and the same hotness. Using this
insight, we expect that allocating strongly co-accessed variables contiguously in memory could benefit
performance. In particular, small-enough variables could fit in a single cache line, reducing the number of
cache misses. Additionally, less-hot variables would be flushed from the cache together, while hot
variables stay in the cache together. Overall, this results in less data movement.

This can be done by replacing individual calls to malloc for co-accessed variables with a single call to
malloc that would allocate enough memory for the entire clique of strongly co-accessed variables. For
example, if @ and b are strongly co-accessed with separate calls to malloc, we would replace the calls with
a single large malloc to obtain a pointer p. Every time a is accessed, we dereference p + n, where n
depends on the size of a. This approach has the nice benefit of reducing calls to malloc as well, which
should additionally improve program performance.

In principle, this sounds fairly simple, but if these malloc calls appear in a loop or if the allocation sizes

mailto:vchoung@andrew.cmu.edu
mailto:drramos@andrew.cmu.edu
http://nicebowlofsoup.com/coaccess

are not known until runtime, we will need to employ a JIT-style dynamic analysis to coalesce the calls to
malloc. We illustrate two scenarios below:

(1) Sizes unknown at runtime:

?

malloc(a);
?

malloc(b);

?

?

malloc(a + b); <-- need to generate this malloc on-the-fly
(char *)p + a;

(2) Loop

loop {
p = malloc(5);

Suppose all the ps are co-accessed. If the loop runs N times but NV is unknown, we can replace the ith call
to malloc (if i is a power of 2) with malloc(2"(i-1) * 5) here for worst case - utility with /g N + [calls to
malloc.

Goals
75%: Determine (statically) co-accessed variables and handle non-looped calls to malloc with unknown
sizes, as shown in Scenario 1 above.

100%: Same as 75%, but also be able to dynamically identify if objects allocated within a loop are
co-accessed (Scenario 2).

125%: Same as 100%, but also perform the transformation described above for Scenario 2.

Plan of Attack
We will pair program the more complex logic, and split the small tasks for this project.

Week of 3/28: Simple static co-access analysis with some notion of strength.

Week of 4/4.: Coalesce calls to malloc with sizes known at compile time.

Week of 4/11: Dependency analysis for malloc sizes not known at compile time and move size
computations around accordingly.

Week of 4/18: Design co-access analysis for variables allocated within a loop.
Week of 4/25: Implement co-access analysis for variables allocated within a loop.

Milestone
See Plan of Attack week of 4/11 (above).

Literature Search
We’ve done a fair amount of literature search so far:

BEL, O., CHANG, K., TALLENT, N. R., DUELLMANN, D.,
MILLER, E. L., NAWAB, F., AND LONG, D. D. E. Geomancy:
Automated performance enhancement through data layout opti-
mization. In 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS) (2020), pp. 119-120.

RAMAN, E., HUNDT, R., AND MANNARSWAMY, S. Structure
layout optimization for multithreaded programs. In International
Symposium on Code Generation and Optimization (CGO’07)
(2007), pp. 271-282.

Co-access data does not seem to be directly used in many modern optimizations.

Resources
No need for anything else. We are using the same VM environment provided for our assignments.

Getting Started
We have some rudimentary code for statically identifying co-accesses. We also have a framework for
instrumenting code, which will be useful for dynamic analysis as well and inserting calls to malloc.

