
Using Co-Access Information for Modifying Dynamic Memory
Allocation Workloads for Improved Cache Performance

Valerie Choung
Carnegie Mellon University

Daniel Ramos
Carnegie Mellon University

Abstract
In this paper, we introduce the notion of object

co-accesses to improve data placement by dynamic
memory allocators. With the key insight that co-
accessed objects have strong temporal locality, we
construct a workload for the dynamic memory al-
locator that exhibits both temporal and spatial lo-
cality. This improves cache performance for generic
programs without modifying underlying cache poli-
cies.

1 Introduction

Modern systems use a variety of techniques to im-
prove program performance. Much of this revolves
around reducing data movement, which is known to
be expensive. Some techniques for reducing data
movement include caching and memory allocation
optimizations. Standard caching techniques take ad-
vantage of applications’ memory access locality and
are an extensive area of research.

In the meantime, general-purpose allocators such
as standard malloc need to work in a wide variety
of cases, allocating chunks of memory whose sizes
range from one byte to several gigabytes or even
more. However, every program has specific needs, so
custom memory allocators written expressly for one
application tend to perform better. These custom
memory allocators cater to specific workloads that
the application is expected to handle.The downside
to using custom memory allocators is that the mem-
ory allocator must be re-written or re-designed for
every new application. Because of the difficulty of
writing optimal memory allocators, there are entire
papers written on how to design and write them.

Our key insight is that instead of writing a new
memory allocator for every application, we can
transform an application’s workload into one that is

naturally more cache-friendly while reducing mem-
ory fragmentation. Most implementations of mal-
loc are not cache-aware, although there is some
work on optimizing malloc to reduce cache thrash-
ing for multi-core systems. Our solution is novel
because our approach to using malloc makes use of
application-level semantics to help malloc play nice
with caching.

To achieve our goal, we introduce the notion of
object co-accesses, which are accesses to objects with
strong temporal locality. Since co-accessed objects
have similar lifetimes and access patterns, allocating
and caching co-accessed objects together will create
a workload that has improved locality. In essence,
we would like to use temporal locality to force spatial
locality in a program.

1.1 Contributions
1. A framework for detecting co-accesses of vari-

ables within functions.

2. An optimizer pass for coalescing mallocs of con-
stant/dynamic size based on co-access informa-
tion.

3. Preliminary results showing how coalescing co-
accessed objects can affect run-time perfor-
mance.

2 Design

2.1 Co-Access
On a high level, we say two objects or variables are
co-accessed if an application accesses those variables
within a short time duration. This is an interest-
ing property to explore, because objects that are
strongly co-accessed exhibit, by definition, strong
temporal locality but not necessarily strong spatial



locality. Co-accessed objects also share similar ac-
cess patterns - after all, if two objects are strongly
co-accessed, we can expect that an access to one of
those objects will be closely followed by an access to
the other. With similar reasoning, we can also say
that co-accessed objects will have similar lifetimes
- when one object in a co-access pair will never be
accessed again, we can make a wise guess that the
other object in the pair will likewise never be ac-
cessed again.

2.2 Malloc Transformation
In this paper, we examine a compiler optimization
that benefits from having co-accessed data. Our in-
sight is that strongly co-accessed variables generally
share the same lifetimes and the same hotness. Us-
ing this insight, we expect that allocating strongly
co-accessed variables contiguously in memory could
benefit performance. In particular, small-enough
variables could fit in a single cache line, reducing
the number of cache misses. Additionally, less-hot
variables would be flushed from the cache together,
while hot variables stay in the cache together. Over-
all, this results in less data movement. This can be
done by replacing individual calls to malloc for co-
accessed variables with a single call to malloc that
would allocate enough memory for the entire clique
of strongly co-accessed variables. Figure 1 illustrates
this idea. In this case, the three objects are marked
as coaccessed and therefore their memory allocation
is coalesced together.

2EMHFW�� 2EMHFW�� 2EMHFW��

2EMHFW�� 2EMHFW�� 2EMHFW��

Figure 1: Heap memory allocation transformation

Consider as an example that variables a and b are
strongly co-accessed with separate calls to malloc,
we would replace the calls with a single large malloc
to obtain a pointer p. Every time a is accessed, we
dereference p+n, where n depends on the size of a.
This approach has the benefit of reducing calls to
malloc as well, which should additionally improve
program performance.

In principle, coalescing multiple malloc’s into one
sounds fairly simple, but if the allocation sizes are
not known until runtime, we will need to employ a
JIT-style dynamic analysis to coalesce the calls to
malloc.

1 a = ?
2 p1 = malloc(a)
3 b = ?
4 p2 = malloc(b)

Figure 2: Source code

1 a = ?
2 b = ?
3 p1 = malloc(a + b)
4 p2 = p1 + b

Figure 3: Target code

For example, consider the source program in Fig-
ure 5. Our goal is to coalesce malloc’s in lines 1 and
3 to a single malloc, as shown in Figure 3. To make
sure this is possible, we need make sure that the
computation of b (line 3, Figure 5) does not depend
on any operations made on top of p1.

To coalesce mallocs in loops, we also need to do
code transformations. For instance, consider the
program from Figure 4. Suppose all the p’s are co-
accessed. If the loop runs N times but N is un-
known, we can replace the i’th call to malloc (if i is
a power of 2) with malloc(2(i−1) ·C) here for worst
case 1

2 utility with log(N)+1 calls to malloc.

1 loop {
2 p = malloc(C)
3 (...)
4 }

Figure 4: Example loop with malloc of fixed sized
C, where all the p variables are co-accessed

3 Implementation

3.1 Identifying Co-Accesses
There are a few ways we can formally define a co-
access. For example, the simplest definition of a co-
access could be a pair of addresses that are each
dereferenced within N instructions of the other with
no exceptions. Even with this simple definition,
there are multiple considerations to take when defin-
ing a co-access (e.g., what is the size of N?, should
it be a constant or a variable dependent on types
or object sizes?). Alternatively, we can consider co-
accesses with a finer-granularity, ignoring if accesses
to addresses are within an object.

Another aspect of co-accesses to consider is
whether a co-access should be a uni- or bi-directional
relation: if an access to variable a is always followed
by an access to b, but an access to a does not al-
ways precede an access to b, then we need to choose
whether we still call the pair (a, b) a co-access. This
problem can be partially resolved by giving each co-

2



access a notion of strength. A very strong co-access
could be one where two variables are always accessed
together and their accesses are very close and very
frequent. A weaker co-access would be one where
two variables are mostly accessed together, and their
accesses are somewhat frequent.

3.2 Co-Access Strength
Algorithm 1 illustrates our method for calculating
co-access pairs. The algorithm takes as input a ba-
sic block, and a sliding window of fixed size (ini-
tially without any concrete values), and outputs a
list S of co-access pairs and their respective strength
(vi,vj ,si,j), . . . , where vi and vj are variables and
si,j is the respective strength. For each instruction
in the basic block (line 2), and for each operand in
the instruction (line 3), we will strengthen the rela-
tion between each operand and the variables in the
window. In our implementation Strengthen sim-
ply increments a counter. After processing the in-
struction, we slide the windows Size(I) times (i.e.,
the number of operands in Instruction I). The idea
is then to append the new operands to the window
(line 10) to be processed in the future iterations.

Algorithm 1 GenCoaccessesPairs(B,W)
Input: B: Basic block
Input: W: Window of variables of fixed size
Output: S: Pairs of co-accesses and their strength

1: S := {}
2: for each I ∈ B do
3: for each op ∈ I do
4: for each v ∈ W do
5: S := Strengthen(S,v,op)
6: end for
7: end for
8: W := SlideWindow(W, Size(I))
9: for each op ∈ I do

10: W := AppendToWindow(W,op)
11: end for
12: end for
13: return S

Our current implementation of Strengthen is
simply incrementing a counter for the number of
times each pair of variables are seen together. How-
ever, there are different alternatives such as:

Strength(a,b) = # accesses to a followed by b
# accesses to a

We currently have an unmerged pull request for
making this change to our co-access strength cal-
culation.

Our algorithm for GenCoaccessPairs in 1 also
has a parameter W, so that we can calculate co-
accesses that may cross basic block boundaries.

3.3 Co-Access Sets
After computing co-access pairs, we can build a no-
tion of co-access sets using transitivity. Our idea
is that if two pairs of co-accesses (vi,vk,si,k) and
(vk,vj ,sk,j) are above a certain certain strength T
(that is, if si,k ≥ T and sk,j ≥ T , then we can say
(using transitivity) that all variables vi,vk,vj form a
co-access set and their memory allocation can be co-
alesced together. We do this process iteratively un-
til we have merged all co-access pairs into co-access
sets using a union-find data structure, as illustrated
in Algorithm 2.

Algorithm 2 GenCoaccessesSets(L,T )
Input: L: List of co-accesses pairs and strength
Input: T : Strength threshold
Output: S: Sets of co-accesses to malloc together

1: S := {}
2: for each (v1,v2,s) ∈ L do
3: if s ≥ T then
4: s1 := GetSet(S,v1)
5: s2 := GetSet(S,v2)
6: MergeSets(s1,s2)
7: end if
8: end for
9: return S

3.4 Choosing Subsets of Co-access
Sets for Malloc Transformation

The algorithm in 2 retrieves global co-access sets
given a threshold strength. Because it is hard to
figure out which call to malloc comes first in a set
of mallocs that span multiple blocks and which call
to free comes last in the corresponding set of frees,
we split the global co-access sets into co-access sets
for which all mallocs are contained within the same
basic block and all corresponding frees are contained
within the same basic block, which we call a per-
mallocblock co-access set. This way, we can obtain
a mapping of (mallocblock, freeblock) to one or more
per-malloc co-access sets.

Then, for each basic block, we find all the per-
mallocblock co-access sets corresponding to the basic
block and run the malloc transformation on each of
those per-mallocblock co-access sets.

So, for the code in 6, if objects a, b, c, and d
are all co-accessed, then a and b would be malloced

3



1 a = malloc(C)
2 b = malloc(C)
3 c = malloc(C)
4 d = malloc(c)
5 (...)
6
7 if (cond) {
8 free(a)
9 free(b)

10 }
11
12 free(d)
13 free(c)

Figure 5: Source code

1 a = malloc(C)
2 b = a + C
3 c = malloc(C)
4 d = c + d
5 (...)
6
7 if (cond) {
8 free(a)
9 }

10
11 free(c)
12
13 .

Figure 6: Target code

together, while c and d would be malloced together,
since their frees are in differing basic blocks.

4 Future Work

4.1 Control Flow
We have some infrastructure set up for instrument-
ing the source code to handle control flow when iden-
tifying co-accesses, necessary for handling the sce-
nario in 7.

1 loop {
2 p = malloc(C)
3 (...)
4 }
5
6 loop {
7 free(q)
8 (...)
9 }

Figure 7: Example loop containing malloc and an-
other loop with corresponding frees

The scenario in 7 is a particularly annoying sce-
nario, because the order of the freed objects may not
be the same as the order of the malloced objects.

To handle this, we can either instrument the pro-
gram code to keep track of malloced objects and use
reference counting to find the last call to free in a
cset.

Another interesting approach might be to modify
malloc so that it can track its own callsites and infer
whether a call to malloc is probably in a loop, and
handle the case in 4 accordingly. This essentially

leaves a lot of co-access set identification logic to
malloc, which is convenient because malloc already
keeps track of malloced objects, to some extent.

However, we ran out of time to implement these
due to implementation complexity.

4.2 Weakening Constraints onf Co-
Access Sets

The constraints described in 3.4 are fairly tight.
With analysis information about basic blocks that
dominate other basic blocks, we could conceivably
loosen the constraints for per-malloc co-access sets
so that the frees don’t have to be in the exact same
basic block, as long as the ordering of the frees is
still known at compile time.

5 Evaluation

For our malloc optimizations, we aim to answer the
following research questions.

1. What is the perfomance of programs with our
optimization compared against the baseline?

2. How does coalescing malloc calls affect perfor-
mance?

3. How does our optimization affect code-size?

5.1 Experimental setup

To evaluate our approach, we implemented our opti-
mization using LLVM 12.0.1 as a function-level pass.
All results presented in this section were obtained on
macOS Monterey running on a 2.3 GHz 8-Core Intel
Core i9 with 32 GB of RAM.

5.2 Results

5.2.1 Running Time of Randomly-
Generated Benchmark

We generate benchmarks by randomly generating
n variables, mallocing them and freeing them in a
random (valid) order while inserting uses of random
malloced variables before they are freed. We could
probably have introduced more complex programs
with interesting basic blocks if we used a more so-
phisticated code generator such as CodeAlchemist,
but that type of code generation does not result in
realistic-looking code either.

4



Because we did not finish implementing co-access
identification for mallocs with loops (and other com-
plex control flow), we could not test on actual appli-
cations, which mostly used malloc in more complex
situations.

Figure 8 illustrates shows the run time of our
benchmarks in function of the number of malloc /
free blocks for.

Figure 8: Caption

5.2.2 Code Size

We also notice that the number of instructions re-
duces after running our optimization. This is be-
cause the number of instructions to call malloc and
store the pointer is the same as calculating the off-
set of a pointer and assigning it to a variable, while
we remove n − 1 frees for every n mallocs that we
coalesce.

6 Related Work

Prior research related to our domain can be decom-
posed into 2 main approaches: 1) hint-based data
layout optimizations, 2) hardware-software cooper-
ative techniques.

As data movement starts to become a major bot-
tleneck within large scale systems, data layout op-
timizations improve performance by enhancing data
locality across the hardware stack. Prior works have
proposed techniques to provide semantic hints in
order to improve the data layout of different pro-
gram executions and workloads. One technique pro-
posed by Peled et al. uses a program analysis pass
to capture access patterns for data structure and
transform them into semantic hints for a context-
based memory prefetcher [4]. Similarly, Geomancy
is a tool that can find efficient data layouts for file
systems by using reinforcement learning with the

I/O traces of past workloads as semantic hints [1].
Lastly, Whirlpool, a data placement system for non-
uniform cache architectures, provides optimal data
placement using a combination of static informa-
tion and dynamic policies [2]. These semantic hints
aren’t just limited to improving the execution time
of systems. In [3], the authors demonstrate a new
practical way to reuse JIT profile data across virtual
machine executions to improve the warm up time of
subsequent virtual machines.

In more recent work, Vijaykumar et al. pro-
pose Metasys, a hardware software co-design that
enables new cooperative techniques to enable cross-
layer communication from an executing program to
the hardware stack [5]. By communicating program
metadata to the hardware architecture, Metasys en-
ables new approaches to enhance memory prefetch-
ing performance and security defenses.

7 Conclusions

Overall, this approach to making uses of malloc more
cache-friendly seems promising. Without a working
control flow analysis, however, it is rather difficult to
perform a more useful evaluation, since, as it turns
out, many applications tend to call malloc in loops
and branches. So, we hope the work outlined in 4
will help with this.

8 Project Logistics

1. 50-50 work distribution

References
[1] Bel, O., Chang, K., Tallent, N. R., Duellmann, D.,

Miller, E. L., Nawab, F., and Long, D. D. E. Ge-
omancy: Automated performance enhancement through
data layout optimization. In 2020 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS) (2020), pp. 119–120.

[2] Mukkara, A., Beckmann, N., and Sanchez, D.
Whirlpool: Improving dynamic cache management with
static data classification. ACM SIGARCH Computer Ar-
chitecture News 44, 2 (2016), 113–127.

[3] Ottoni, G., and Liu, B. Hhvm jump-start: Boost-
ing both warmup and steady-state performance at scale.
In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO) (2021), pp. 340–
350.

[4] Peled, L., Mannor, S., Weiser, U., and Etsion, Y.
Semantic locality and context-based prefetching using re-
inforcement learning. In 2015 ACM/IEEE 42nd An-
nual International Symposium on Computer Architecture
(ISCA) (2015), pp. 285–297.

[5] Vijaykumar, N., Olgun, A., Kanellopoulos, K.,
Bostanci, N., Hassan, H., Lotfi, M., Gibbons, P. B.,

5



and Mutlu, O. Metasys: A practical open-source meta-
data management system to implement and evaluate
cross-layer optimizations. CoRR abs/2105.08123 (2021).

6


